

Cap. 2 Técnicas de Resolução em Otimização Combinatória aula 3

SIMO/MQDEE

MARIA CÂNDIDA MOURÃO

(cmourao@iseg.utl.pt)

Cap. 2 Técnicas de Resolução em Otimização Combinatória

- 2.1. Otimização Combinatória Introdução
- 2.2. Relaxações

Relaxação

Relaxação Linear

Relaxação Lagrangeana - Método de Subgradiente

2.3. Resolução exata de problemas

Branch and Bound

Planos de Corte

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

Aplicações

Análise de Investimentos

Uma companhia tem um orçamento de b u.m. para investimentos no próximo ano e identificou n projetos indivisíveis. Cada projeto j proporciona, uma receita de c_j e requer um investimento de a_j .

Formule o problema supondo que se pretende maximizar a receita total.

$$\max z = \sum_{j=1}^n c_j \, x_j$$
 S. a:
$$\begin{cases} \sum_{j=1}^n a_j x_j \leq b & \text{Problema da }\\ x_j \in \{0,1\} \ j=1,\dots,n \end{cases}$$

O problema da mochila é NP-difícil.

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

51

OTIMIZAÇÃO ÎNTEIRA

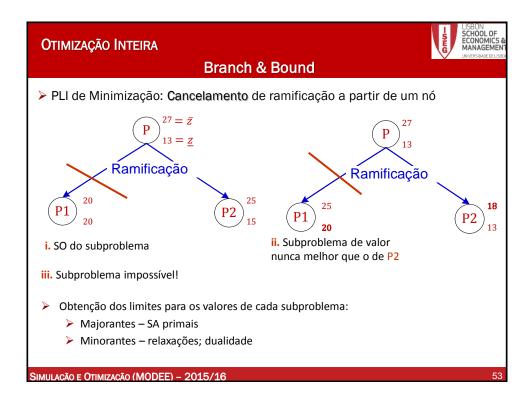
Branch & Bound

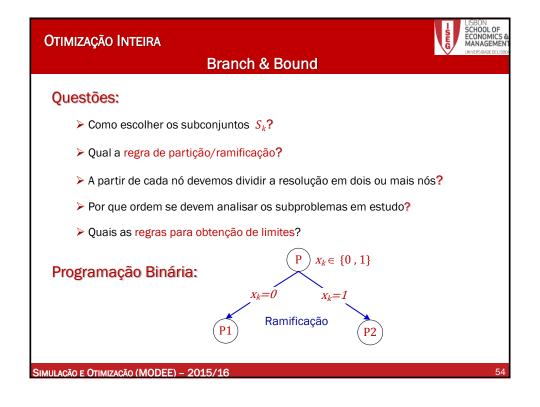
- ➤ PLI de Minimização: $z^* = Min\{c : x \in S\}$ $(S \cap \mathbb{Z}^n \neq \emptyset)$
- ➤ Pretendemos "partir" o problema inicial em problemas mais fáceis de resolver e que nos levem à resolução do problema inicial!
- Decompondo S em subconjuntos mais pequenos:

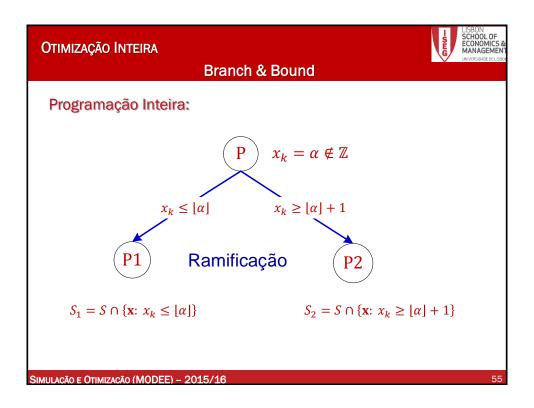
$$S = \bigcup_{k=1}^{K} S_k$$

e considerando $Z^k = \min\{\mathbf{cx}: \mathbf{x} \in S_k\}$ então, $Z^* = \min_k z^k$

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16







Branch & Bound Figure 3.2. Solution in the image is a proper section of the image is a proper sec

OTIMIZAÇÃO INTEIRA

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

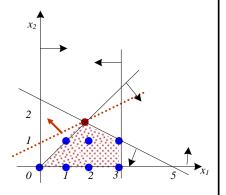
Branch & Bound

➤ Graficamente - PLR

$$\begin{aligned} \min z &= x_1 - 2x_2\\ \text{s.a:} & \begin{cases} x_1 - x_2 &\geq 0\\ x_1 + 2x_2 &\leq 5\\ x_1 &\leq 3\\ x_1, x_2 &\in \mathbb{R}_0^+ \end{cases} \end{aligned}$$

$$\mathbf{x}_{RL} = (x_1^{RL}; x_2^{RL}) = \left(\frac{5}{3}; \frac{5}{3}\right)$$

$$\underline{z} = z_{RL} = -\frac{5}{3} \le z^* \le 0 = z(0,0)$$



SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

-7

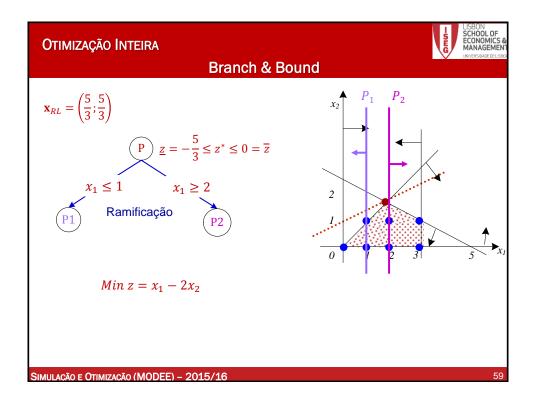
OTIMIZAÇÃO INTEIRA

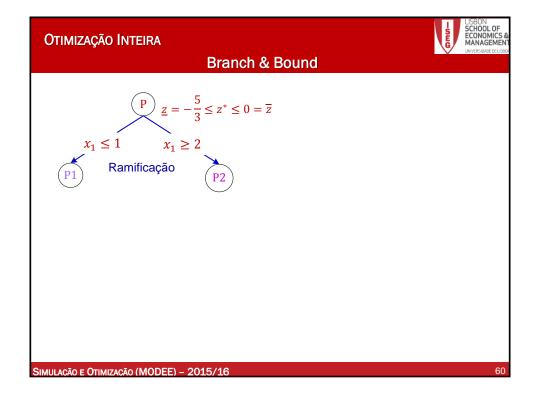
Branch & Bound

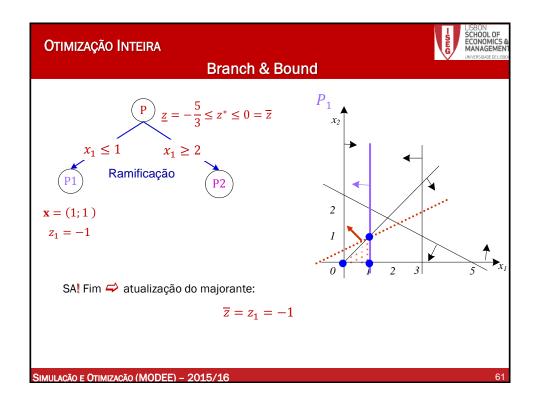
$$\mathbf{x}_{RL} = \left(\frac{5}{3}; \frac{5}{3}\right)$$

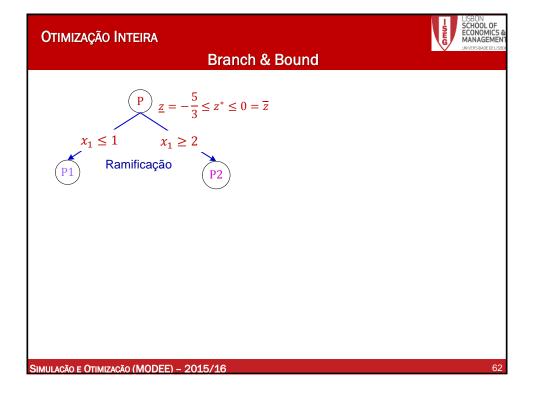
$$P \quad \underline{z} = -\frac{5}{3} \le z^* \le 0 = \overline{z}$$

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

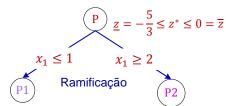




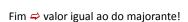


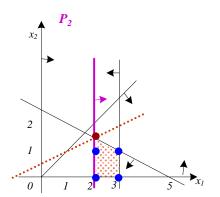


Branch & Bound



$$\mathbf{x} = \left(2; \frac{3}{2}\right)$$
$$z_2 = -1$$





SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

00

OTIMIZAÇÃO INTEIRA

Branch & Bound

- **0.** Fazer: $P_0 \leftarrow PLR$; $S_0 \leftarrow S$; $ns \leftarrow 0$ {contador do número de subproblemas}
- **1.** Resolver P_0
 - **Se** a SO de P_0 é admissível de PLI, **FIM** (é também SO de PLI)
 - **c.c.** criar a raiz da árvore com o subproblema P_0 e respetiva solução; $k \leftarrow 0$ {nº subproblema em análise}
- **2.** {Ramificação} Ramificar P_k em dois subproblemas:

Seja $x_r = \alpha \notin \mathbb{Z}$. Incluir na árvore os dois novos subproblemas por resolver:

$$\begin{array}{ll} (P_{ns+1}) & z_{ns+1} = Min\{\mathbf{cx} : \mathbf{x} \in S_{ns+1}\} & \text{com } S_{ns+1} = S_k \cap \{\mathbf{x} : x_r \leq \lfloor \alpha \rfloor\} \\ (P_{ns+2}) & z_{ns+2} = Min\{\mathbf{cx} : \mathbf{x} \in S_{ns+2}\} & \text{com } S_{ns+2} = S_k \cap \{\mathbf{x} : x_r \geq \lfloor \alpha \rfloor + 1\} \end{array}$$

Fazer $ns \leftarrow ns + 2$

- Se existirem subproblemas por resolver: resolver um qualquer desses subproblemas, seja P_k, Ir para 4
 c.c. FIM (SO: melhor SA encontrada)
- 4. {Limitação}
 - Se P_k é impossível ou tem valor ótimo $Z_k \geq \bar{Z}$ cancelar a pesquisa nesse ramo, Ir para 3
 - *c.c.*, Se a SO de P_k for SA do PLI cancelar a pesquisa nesse ramo e Ir para 5
 - c.c. Ir para 2
- **5.** Se $z_k < \bar{z}$ atualizar: $\bar{z} \leftarrow z_k$ e considerar a SO de P_k como melhor SA
- **6.** Se $\underline{z} = \bar{z}$ FIM (a S.O. é a solução com valor $\underline{z} = \bar{z}$) c.c. Ir para 3

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

Branch & Bound

Regras:

- Escolha da variável para a ramificação:
 - > Variável de menor/maior índice
 - > Variável mais fracionária:

Sendo
$$f_j = x_j - \lfloor x_j \rfloor$$

escolher: $\arg\max_i \{\min(f_j; 1 - f_j)\}$

- \triangleright Escolha do nodo para analisar (problema P_k):
 - Depth-first
 - Escolher o nó com o melhor valor de Zk (valor mais baixo)

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16

OTIMIZAÇÃO INTEIRA

Exercícios

- 8. Escrever o método de branch and bound (B&B) considerando o problema inicial de Maximização.
- Resolva os dois problemas seguintes, utilizando o B&B e considerando como regra para escolha da variável de ramificação:
 - i. A variável mais fracionária.
 - ii. A variável diferente da escolhida em i. e de índice mais baixo possível.

9.
$$Min z = 5x_1 + x_2 + x_3 + 2x_4 + 3x_5$$

9.
$$Min z = 5x_1 + x_2 + x_3 + 2x_4 + 3x_5$$
 10. $Max z = 3x_1 + 4x_2 + 2x_3 + x_4 + 2x_5$

s.a:
$$\begin{cases} x_2 - 5x_3 + x_4 + 2x_5 \ge -2\\ 5x_1 - x_2 + x_5 \ge 7\\ x_1 + x_2 + 6x_3 + x_4 \ge 4\\ x_1, x_2, x_3, x_4, x_5 \ge 0\\ x_1, x_2, x_2 \text{ inteiros} \end{cases}$$

$$\text{s.a:} \begin{cases} 4x_1 - x_2 + 2x_3 + x_4 + x_5 \leq 15 \\ -x_1 + 3x_2 + 3x_3 - x_4 - 2x_5 \leq 22 \\ 2x_1 + x_2 - x_3 + x_4 + 3x_5 \leq 13 \\ x_j \in \mathbb{Z}_0^+ \quad j = 1,2,3,4,5 \end{cases}$$

11. Formule e resolva recorrendo ao B&B o exercício 11.3-4 (pg. 525) do Hillier and Lieberman.

Solver

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2015/16